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1.0 INTRODUCTION

4

Optical signal processing makes possible rapid coordinate transformations,

optical pattern recognition, and matrix-matrix multiplication. In the present

contract, DSI has demonstrated several significant accomplishments. Among these

are: (a) the design and operation of a spatial-frequency-multiplexed coherent

optical processor; (b) the application of outer product operation to matrix-

matrix multiplication; and (c) the description of three methods for performing

Hankel transforms with optical or digital processors.
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2.0 RESULTS

" The accomplishments described below are important in a number of areas.

The optical information processing projects described have application to mode

analysis of high energy laser resonators, alignment of space telescopes, and

tomographic reconstruction. The progress in coherent optical moment generation

*: is of value in image data compression and optical pattern recognition of

statistical images. Finally, the acoustooptic matrix signal processor con-

structed is useful in radar signal processing, passive sonar surveillance, and

adaptive beam forming.

2.1 MULTIPLEXED COHERENT OPTICAL PROCESSOR

A coherent optical processor designed for calculating generalized moments

of a two-dimensional pattern' is described in Enclosure (1). In order to provide

for parallel computation of multiple moments, a spatial-frequency multiplexing

scheme was used. A computer-generated holographic mask was shown to provide

complete flexibility in choosing moment generated functions. The calculation

of five geometric moments was experimentally demonstrated for simple objects.

These geometric moments correspond to x, y, xy, x2 , and y2 .

A computer-generated holographic mask was constructed to compute the geo-

metric moments corresponding to the generating functions, x, y, xy, x2 , and y2 .

In order to reduce the dynamic range problems, when the hologram was construct-

ed the scale of the generating functions was chosen such that the linear and

quadratic-moment values would be equal for a symmetric object threefourths the

* linear size of the mask. The spacing chosen avoided crosstalk between adjacent

moments. Since several generating functions are encoded on a single mask, the

optical processor is able to calculate several moments in parallel.

* 2.2 APPLICATION OF OUTER PRODUCT OPERATION TO MATRIX-MATRIX MULTIPLICATION

The systolic architecture proposed by Caulfield and Rhodes 2 for matrix-

matrix multiplication was utilized. This approach bypasses the two-dimensional
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real time spatial light modulators required by other architectures. Various

implementations of this optical processor 3 can use one of the following modula-

tion mechanisms: (a) electrooptic, (b) direct driven LED array, and (c) acousto-

optic (e.g., Bragg cells). These three approaches are described in Enclosure (2).

2.3 OPTICAL AND DIGITAL TECHNIQUES FOR PERFORMING HANKEL TRANSFORMS

Generalized Hankel transforms are useful in analyzing the effect of cir-

cularly symmetric optical systems on arbitrary inputs. Some examples of such

systems are complex laser resonators and space telescopes. Three methods for

performing Hankel transforms with optical or digital processors were described
4.

The first method was applicable when the input data is available in cartesian

(x-y) format and used the close connection between generalized Hankel transform

and the two-dimensional Fourier transform in cartesian coordinates. The second

method was useful when the input data is in polar (r-e) format and used change

of variables to perform the nth order Hankel transform as a correlation inte-

gral. The third method utilized the von Neumann addition theorem for Bessel

Functions to extract the Hankel coefficients from a correlation between the

radial part of the input and a Bessel function. Initial experimental results 4

obtained for optical implementation of the first two methods are presented

in Enclosure (3).

The analysis of complex optical systems is greatly facilitated by two-

dimensional Fourier techniques. The effect of an optical system on arbitrary

inputs is easily described by a transfer function in the Fourier domain. Gen-

eralized Hankel transform is similarly useful when dealing with a circularly

symmetric (or axisymmetric) system for arbitrary inputs. This situation is

encountered in performing mode analysis on the output of a slightly misaligned

laser resonator as well as in aligning space telescopes. An optical method for

performing mode analysis via generalized Hankel transform has the unique advan-

tage of preserving the phase of the wavefront to be analyzed.
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Multiplexed coherent optical processor for calculating
generalized moments

1. A. Blodgett, R. A. Athale, C. L Glles,* and H. H. Szu

U.S. Naval Research Laboratory. Washington. D.C. 20375

Received September 28, 1981

A coherent optical processor capable of calculating generalized moments of a two-dimensional pattern is described.
A spatial-frequency multiplexing scheme is used to provide for parallel computation of multiple moments. The
use of a computer-generated holographic mask permits complete flexibility in choosing moment-generating func-
tions; e.g., the functions could be complex or have a predetermined weighting function. Experimentally, calcula-
tion of five geometric moments (corresponding to x, y, zy, x2, and y2 ) is demonstrated for simple objects. The spe-
cial features of the proposed coherent optical processor and its space-bandwidth requirements are also discussed.

The role of moments and moment invariants as global Now if the function g(x, y), which multiplies the input
features in pattern recognition is well known.'- 3 Co. f(x, y), has the form
herent optical processors, for calculating geometric M N
moments of images have been recently proposed, 4,5 but g(x, y) E gm,(x,y)exp[j(muox + nvoy)],
both of these processors are restricted to calculating M =-M n =-N

geometric moments only. In addition, the processor of (4)
Ref. 4 is rather complicated, involving interferometric then the output of the optical processor will contain the
setups; the processor of Ref. 5 has an added factor !V desired generalized moments G n (m -- M,..e. , 0,... .he
(p!q!) associated with the pqth moment, further com- M and n = -N,.. . , 0, .... , N) provided that the unit
pounding the dynamic-range problems. In this Letter carrier frequency (uo, vo) satisfies the conditions dis-
we propose a spatial-frequency-multiplexed coherent cussed below. Figure 1 is a schematic diagram of the
optical processor that overcomes these limitations. We optical processor. It consists simply of a mask con-
describe the design and operation of this processor,present the initial experimental results obtained with taining g(x, y) described by Eq. (4) and a Fourier-
it, and summarize its special features and limitations, transform lens. A two-dimensional array of detectors

ith nde rized its se Cn of a two-dimensional measures the light intensity at discrete points in the
The generalized moment Fourier plane, giving I G,,n 2. Since the function g(x,

pattern f(x, y) is defined as y) is bipolar in the case of geometric moments and could

G _f_ be complex for some other choices of generating func-
GEn f J(x, y)gin.(x, y)dx dy, (1) tions, it is necessary to make the mask holographically.

In particular, a computer-generated hologram will
where gm,, (x, y) is the generating function. One way provide maximum operational flexibility to the coherent
of calculating the inner product of Eq. (1) optically is optical processor.
to multiply the input f(x, y) by the generating function To demonstrate the operation of the coherent optical
g n(X, y) and then take a two-dimensional Fourier processor described above, a computer-generated ho-
transform of the product. The moment Gin, is obtained lographic mask was constructed to compute the geo-
at the origin of the frequency plane: metric moments mio, mo , mil, m2o, and in0 2 (corre-

sponding to generating functions x, y, xy, x 2, and y2
Gin" " If f (x, Y)gm, (X, y) respectively). When the hologram was constructed the

SJ- J-"n generating functions were scaled such that the linear-

X exp(-j(ux + uy)Idxdy J . (2) and quadratic-moment values would be equal for a

If g,, (z, y) is multiplied by a spatial carrier ot the form
expU(muox + nvoy)], then the desired moment is ob- ,. --
tained at u - muo, v nvo in the frequency plane -,

Gn= If f f(x,y)gmn(x,y)expl-il(u - muo)x TRANSFORM

+ (v - nvo)ylldxdyl " Fig. 1. Schematic diagram ef a multiplexed coherent optical
processor for calculating generalized moments.
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shows the null at the center, as depicted in Fig. 5(a).
When the input was translated by -10% of its linear
dimension along the X axis (thus removing the sym-
metry about the Y axis), a nonzero value for mio is oh-

3,4 I tained, as is seen in Fig. 5(b).
The line scans through m2o and in0 2 moments of a

0 binary rectangular input with a 2:1 aspect ratio and X-
- 1/2 - and Y-axis symmetry are displayed in Fig. 6. The

Za- 2 theoretical value of the ratio Im2o/mOA 2 is 16, whereas
_J 1/4 i the experimentally measured value is 16.3, corre-sI sponding to an error of -1.9%. A detector with better

2dynamic range and linearity should result in improved
1/4 1/2 3/4 I X accuracy.

In this Letter we have described a coherent optical
Fig. 2. Plot of the generating functions x and X2 with x processor designed for calculating generalized moments
multiplied by a weight of 0.5. of a two-dimensional pattern. A computer-generated

hologram is used to encode several generating functions
Va on one mask with spatial-frequency encoding. This

special feature enables the processor to calculate several
M20 moments in parallel. The use of a computer-generated
A Vol hologram makes it possible to encode complex gener-

ating functions and permits predetermined weighting
functions to be used for dynamic-range consider-
ation.

M02

-u 0 . 09 {0. 03 (uo. 03

0, -v 0 1

Fig. 3. Arrangement of the five geometric moments in the
output plane.

symmetric object three fourths the linear size of the
mask (Fig. 2). This was done to alleviate the dy-
namic-range problems in making the mask. The ar- Fig. 4. Photograph of the output of the optical processor.
rangement of the five moments in the output plane is The input was a square binary object with x and y sym-
shown in Fig. 3. The spacing was chosen to avoid cross metry.

*i talk between adjacent moments. It should be noted
-. that the arrangement is determined by the spatial car-

rier multiplying the different generating functions and
hence is completely under experimental control. The

* computer-generated holograms, which tised the Lee- ~
Burckhardt encoding scheme,6 contained 216 X 216 o.
pixels and had physical dimensions of 16.2 nun X 16.2 .

mm. The output was detected by a video camera with
a PbO target. The-y of the camera was adjusted to be
ze 1; hence the electrical signal was proportional to the
light intensity. The output of the camera was digitized
and stored in a minicomputer for further analysis.

The coherent optical processor was used to calculate . . - .... .
these five geometric moments for simple inputs. A t
photograph of the output for a )inary square input 10 go
image is displayed as Fig. 4. The monews tire naw-

sured at the center of each of the five patterns. Them m Fig. 5. (a) Line scnn through the mi0 moment of a bintry
and mo moments are seen to be zero, indicating thait t he sqtuare with x symmetry. (b) Line scan through the ma io
input had symmetry about the Y and X axes. respec- woment of a hinary square shifted in the x direction wit h re-
tively. A line scan through the i it, pttr clearlY spert to its position in (a).
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* ' The maxinmm number of moments that can be cal-
vtulated in parallel is determined by the single-sidedbandwidth of the system (including the computer-

gelleraed hologram) B.,, the single-sided bandwidth of
the input function Bi, and the single-sided bandwidth
of the generating function Bin. Since the output con-
tains a convolution between the Fourier transform of
the input and the Fourier transform of the generating

* ,~, -,function, each term will be extended over a region 2(Bi
"10 "+ B,,,) in the frequency plane. The spacing of the mo-

ments (determined by uo in u direction and by vo in v(a) (b) direction) should be such that at points (muo, nvo) only

Fig. 6. Line scans through two geometric moments of a the G.. will be nonzero; i.e., uo = vo (B, + B,), as isi rectangle with 2:1 aspect ratio: (a) m.,0, (h) mo. shown in Fig. 7 for one dimension. Therefore the total
number of moments that can be calculated in parallel
is given by

= 2 B - 112 (5)

This number can be increased substantially by using
spectrum-shaping techniques on the input; these

-. , Q 0., M'., techniques will be discussed in a subsequent publica-
"'"",€//t "ion.#I I- N

, \\We would like to thank James Leger of the University
" \...of California. San Diego, for providing a copy of the code

/ :._ for generating the computer-generated holograms and
-U0 0 uo U Marilyn Blodgett for implementing this code on the

Naval Research Laboratory's computer-film-writer
(8, * 8,,i system.

Fig. . Distribution i thk betutlnen Midj ntit, , + 1 gi Permanent address, Department of Electrical En-
leaig to Deriont oshm en .. gineering and Computer Sciences, Clarkson College ofleading to zero cross talk between iidja'eilt 1mmnlenis.

'l'echnology, Potsdam, New York 13676.
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Optical matrix-matrix multiplier based onLIGHT SOURCE CROSSED PAIR OF TWO-DIMENSIONAL
one rdutdcmpsto LINEAR EO M OULATORS DETECTOR ARRAY

Ravindra A. Athale and William C. Collins
* U.S. Naval Research Laboratory, Washington, D.C.

20375.
Received 5 March 1982.qSponsored by Joseph W. Goodman, Stanford University. acb b. "L -

Optical processors for multiplying two matrices have been ;

described in the literature."~ Considerable work has been
reported recently on performing vector-matrix multiplica-COUNRWSUTPODT
tions with incoherent optical processors.5' 6 It is suggested OUMN OWS OUTRI ROUC

that matrix-matrix multiplications can be implemented with
these processors by inputting one matrix a row at a time while Fig. 1. Schematic diagramn of an F0O-EO processor for matrix mul-
the second matrix is encoded on a 2-D mask. The output tipticat ion. I'he crossed pair of linear modulators and detector plane
matrix is then available one row at a time. All these schemnes are shown separated for the sake of clarity.
have one drawback in that they require at least one of the
input matrices on a 2-D mask, thus snaking- it difficult to
update that matrix at high frame rates with currently available
2-Dl spatial light modulators (SLM). An optical processor LINEAR LEO LINEAR ARRAY TWO-DIMENSIONAL

r asdona ytoi achtctr WST~eliyI-10110PI o ARRAY OF EO MODULATORS DETECTOR ARRAY

overcome this drawback .7But such a processor reqiires 2N
- 1 parallel channels to handle N X N miatrices and takes 4N 8

clock cycles to perform one vector-matrix multiplication. 1'
Thus it does not fully utilize the parallel processing cspabil- 13

ities of optical systems. ,b
These processors are all based on performing the inner as,1

product between two vectors for generating one elemient of the t,,

output vector (or matrix). Thus they use dimensionality-.ll
reducing operations (from N to 1). An alternate approach b

would involve dimensionality-increasing operntion., siuch as
an outer product between two vectors (from N to N*-). Pro-
posals have been made to use the outer product between two
vectors to generate the covariance matrix of those vectnrs.8RS- COLUMNS OF ROWS OF OUTER PRODUCT

In this Letter we describe the application of the outer product A i MATRIX C_

operations to matrix-matrix multiplication. Fig. 2. Scheinttic diagriimi of a LED-EQ processor for matrix mul-
The matrix multiplication between two NT X N matrices A Iti-st ion. niaging rind focusing optics are omitted.

and B can be stated as follows' 0 :

C A B (I)

(12,bit a2,, 2.... a2ib,,,
where ~Cii A,kBki. ~a,,~

k-I 1 a6 ,Inolh2... nb)

Thus the ijth element of C is given by the inner product he- Here eaich i mt-rix ternm Ci in the summation is seen to corre-
tween the ith row vector of A and the jth column vector of 11. spond to an otiter produict betwveen the ith column vector of
Alternatively the output matrix C can he expressed as a sum Aand it hrow vector of H. TPhe ou ter product between two
of N matrices: vectors can he performed olpticailly by crossing two linear-array

Nr light modulators as dt-scrihed in Ref. 8. The summation of
C- E C, (2) thle difti'rent. miat rix tervts in Eq. (2) can be performed in a 2-D

i1 initegral ing detector arrmy. Tlo perform the operation of
where nmatrix miultiplication betw~een two N X N matrices A and B,

1S Jul10 1982 / Vol. 2 1. No. 12 /APPLIED OPTICS 2089
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the columis of Aand rows of B arc aplied scquientially to tlie the arustic wave in the lragg cell in time. The columns of
appropriate elements of the crossed pair of linear arrays of A nd rows of It modulate an rf carrier which drives the ap-
light modulators. The light transmitued through the cros.sed propriate llragg cells. When all the elements of the column
light modulators contains the outer product betwse two (row) vector are loaded in the Bragg cell, the light source is
vectorswhich is detected and summed in a 2-1) dete(tor array. pul.-ed and the outer l))dluct is stored in the detector
Thus it takes N clock cycles to carry ott the tuatrix intltipli- array.
cation which involves N3 multiplies and N' addii io s. 'l'lu
optical processor, therefore, performs N2 mull iplies nd N"
additions in parallel. In this algorithm both of the input The choice of n prticular implementation of the processor
matrices are required one column (row) vector at a time, and The gide of a p at of tces sor
the well-developed technology of I-D light modulators can he will guided by the format of input matrices as well as theutilizedconstraints imposed by the volume and power consumptionrequirements of specific applications.

The various implementations of this optical processor can
use one of the following modulation mechanisms for the linear The overall performance of this optical processor will be
array of light modulator.s: electrooptic (EO) modulations, determined by the operating characteristics of the light source,
direct driven LED array, or, acoustooptic (AO) Bragg cells. the light modulators, and the 2-D detector array. Since the

technologies pertaining to the light sources and 1-D modu-
lators are well-developed, the limitation on the accuracy and

In this Letter we describe three implementations: throughput rate of the processor will be imposed by the 2-D
(1) Encoding of both A and B via EO modulators (EQ-EQ detector array. The main choices for the detector array are

processor) leads to a very compact optical system which does going to be CCD array, photodiode array, and vidicon TV
not require any imaging or focusing components such as lenses camera. As a representative example, if one considers the
or fibers. The schematic diagram of the optical processor is third implementr ion of the optical processors (AO-AO) with
shown in Fig. 1, where the two crossed light modulator arrays the vidicon TV camera as the detector, it is possible to mul-
and detector are shown separated for the sake of clarity. The tiply two positive 1000 X 1000 matrices in 30 n. -ec corre-
EO modulators can be constructed out of PLZ'T elect rooptic sponding to 3 X 1010 multiplies and 3 X 1010 adds/sec with
ceramics which possess good switching speed and require 8-bit accuracy. Such a matrix-matrix multiplier would be
moderate voltages."1 useful in 2-D mathematical transforms, matrix inversion

(2) The schematic diagram of the optical processor where problems, and pattern recognition among other tasks.
A is encoded via direct modulation of a LEI) array and 1 is
encoded via EO modulators (LED-EO processor) is shown in
Fig. 2. Here an optical system spreads the LEI) array output Stimulnting discussions with D. Stillwell, J. N. Lee, and A.
in the horizontal direction while focusing in the vertical di- 1). Fisher arc gratefully acknowledged.
rection. The linear array of EO modulators can consist of

point modulators instead of the elongated finger modulators
required by the EO-EO scheme. The emerging light is then
imaged in both horizontal and vertical directions ol a 2-1) References
detector array. 1. R. A. Heinz, .1. 0. Artman. and S H. Lee, Appl. Opt. 9, 2161

(3) The optical processor based on encoding both A and B (1970).
via Bragg cells (AO-AO processor) is similar to the crossed 2. W. Schneider and W. Fink. Opt. Acts 22,879 (1975).
Bragg cell processors described in the literature for generating 3. P. N. Tamura and J. C. \Vyaut, Proc. Soc. Photo-Opt. Instrum.
Woodward's ambiguity functions12 (see Fig. 3). The differ- Eng. 83,97 (19)76).
ence in this case is that the light source is pulsed so as to freeze 4. A. R. Dias, "Incoherent Optical Matrix-Matrix Multiplier,"

Optical Information Processing for Aerospace Applications,
NASA Conference Publication 2207 (NTIS, Springfield, Va.,
1981).

PULSED LIGHT CROSSED PAIR OF TWO-OIMENSIONAL 5. M.A. Monaham K. Bromley and R. P. Bucker Proc. IEEE 65,
SOURCE BRAGG CELLS DETECTOR AI40AY

.... 121 (1977).
b1: 6. J. W. Goodman, A. I. Dins, and L. M. Woody, Opt. Lett. 2, 1

(1978).
-a 7. H. .1. Caulfield ct al., Opt. Commun. 40,86 (1981).

8. A. Tarrasevich, N. Zepkin, and W. T. Rhodes, "Matrix Vector
Multiplier with Time-Varying Single Dimensional Spatial Light

b., Modulators," Optical hformatinn Processing for Aerospace
Applictit,,ns, NASA Conference Publication 2207 (N'IS,
Springfield, Va., 1981).

t9. J. M. Speiser and 1I. J. -Whitchouse, Proc. Soc. Photo-Opt. In-
P it strum. Eng. 298.41 (1981).

10. For the sake of convenience we will deal with square matrices.
although extension to nnsquare matrices will be straightfor.
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12. J. D. Cohen, "Anmbiguity Processor Architecture Using One-
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Optical implementation of integral transforms with Bessel
function kernels

R. A. Athale, H. H. Szu, and J. N. Lee

Naval lRescurch Laborutory, Wushingtonh D.C. 20375

Received November 12. 1981

Integral transforms involving Bessel function kernels are useful in analyzing effects of circularly symmetric optical
systems on arbitrary input-. Methods for performing the integral transforms optically are divided into two catego-
ries. The first category involves input data available in cartesian (x, y) format and uses the close connection be-
tween the desired integral transform and the two-dimensional Fourier transform in cartesian coordinates. The
second category involves input data in polar (r, 0) format and uses methods such as change of variables to performqthe integral transform as a correlation integral. Experimental results obtained with optical implementation for
these two categories are presented.

The analysis of complex optical systems is greatly fa- The generalized Hankel transform, F,(p), can be
cilitated by two-dimensional .Fourier transform tech- defined for an arbitrary function f(r, 0) as follows1 :
niques. The effect of an optical system on arbitrary
inputs is easily described by a transfer function in the f(r, 0) = fn(r) exp(jnO), (3a)
Fourier domain. Integral transforms involving Bessel
functions are similarly useful when dealing with circu- Fn (p) = Ifn (r)J (pr)rdr. (3b)
larly symmetric (or axisymmetric) systems for arbitrary
inputs.' This problem is encountered in the mode The generalized Hankel transform thus involves a
analysis on the output of a slightly misaligned laser Fourier series expansion of f(r, 0) with respect to-O,
resor.ator 2 ,3 or in the alignment of space telescopes. An followed by the operation of the Hankel transform of
optical method for performing mode analysis via inte- order n on f,, (r). In the following we will describe
gral transforms will have the unique advantage of pre- techniques and experimental results for optical imple-,
serving the phase of the wave front to be analyzed, ini mentation of the generalized Hai-kel transforms.
contrast to the more usual methods involving mea- These various techniques are each applicable in dif-
surement of the intensity of the wave front. ferent circumstances.

It is well known that when a two-dimensional func- In optical processors a two-dimensional Fourier
tion has circular symmetry, its Fourier transform is also transform with respect to the cartesian coordinates (x,
circularly symmetric. It can be shown that in such a Y) is performed very easily with the help of a simple
case the Fourier transform is equivalent to the Hankel spherical lens. 4 The equivalence of the two-dimen-
transform of the input, which is defined as sional Fourier transform and the Hankel transform for

0 I-circularly symmetric functions was noted above. For
4 Fo(p) = f(r)Jo(pr)rdr, (1) arbitrary functions, f(x, y), the following relation ex-

ists:

where Jo(pr) is the zeroth-order Bessel function.' Thus
in dealing with circularly symmetric systems, the FT.-,j(x, y) = 5(p, 0) = 27r F,,(p) exp(-jno),
Hankel transform (which is a one-dimensional integral) n=--
can be used instead of the two-dimensional Fourier (4)
transform if the inputs are also circularly symmetric, where 57(p, 0) is the two-dimensional Fourier transform
This technique can be extended to functions of the form of the input in terms of the polar coordinates (p, k).
f(r) exp(jnO) (n-fold symmetric) by using the Hankel The generalized Hankel coefficients Fn,(p) can thus be
transform of order n defined as extracted by performing a one-dimensional Fourier

Fn (p) = fo - f(r)J. (pr)rdr, (2a) transform on 7(p, 0) with respect to 0.

where Jn (pr) is the nth-order Bessel function. Inthis F,,,n(P) = p, P expjn)do. (5)

case the two-dimensional Fourier transform with re- Therefore, a spherical lens first performs the two-
spect to (x, y)-indicated by FT2-is related to o', (0) dimensional Fourier transform with respect to the
by1 cartesian coordinates on the input. A suitably designed

FT[f(r) exp(jnO)] = 27rF,(p) exp(-jnh), (2h) computer-generated hologram then performs the
coordinate transformat ion (cartesian to polar) on the

where (p, 0) are polar variables in the Fourier plane. Fourier transform, generating 7(p, p).-5 This is followed

l('OrIl~*!r,,h. l I'.'' lr..\,,I . .1,I1 \1,.r ih I' "' ~ LS~.... ~~~~~~~~~~ 3'di -a a
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exp(jnO) dcppendence onto the input. The output was
detected by a TV camera, which measures the light in-
tensity in the Fourier plane of the input. The input
used in these experiments had an r dependence given

- by (r - a), thus corresponding to a thin ring of radius
a in the cartesian (x, y) plane, The nth-order Hankel
transform of b(r - a) is a J,(ap), thus allowing easy
comparison with experiments. Figure 1 shows the re-
sults corresponding to the Hankel transform (i.e., n =
0 and exp(jn0) = 1]. In Fig. 1(b) the function lJo(ap)12

is plotted, which is then compared with a line scan
through the origin [Fig. 1(c)] of the output shown in Fig.
1(a), i.e., 0 = 0. Very good qualitative agreement be-

(a) tween the theoretical and experimental results is ob-
tained. Figures 2(a) and 2(b) present the results for the
Hankel transform of order one for the same f(r), i.e., 6(r

* - a) [but here the 0 dependence is exp(j0)]. Again good
qualitative agreement was seen between theory and
experiment. This system also performed the Hankel
transform of order two on the same input with good
results. 6

If the input is polar (r,0) formatted, the direct ap-
proach given in Eq. (3) has to be followed in obtaining

. the generalized Hankel transform. The first part of the
operation, which involves a Fourier series expansion in
variable 0, requires the r and 0 coordinates be mapped

A,,A Palong orthogonal axes. Then Eq. 3(a) is performed
(b) (C) optically using a cylindrical lens. The calculation of the

Fig. 1. Experimental result-, for zeroth-order Hnnkel Hankel transform of order n of f,(r), the nth coefficient
raForm, F. Ep (ra). re a) Potgerap ofth e Hanke ot expansion, is less straightforward, since it involves-( transform, Folp), of M(r - a). (a) Photograph of the output.

(b) A plot of IJo(ap)12, which is the theoretically expected optically performing a space-variant operation; hence,
result. (c) A line scan through the origin of the pattern in (a), this was the main aim here.
giving iF1,(p)j 2 ver3us p. One way of converting a space-variant operation into

a shift-invariant operation is to employ appropriate
change of variables. In the case of the Hankel trans-
forms of order n, the following procedure was described
by Siegman for implementing the space-variant oper-
ation as a correlation integral on a digital processor.,
From the definition (2a) one obtains

I~P A _ _ _ ~(Y) A 1x)Jn (x+ Y)dx, (6)
where r = ro exp(ax), p = po exp(ay), P (Y) = pF (p),

fljIK - 1(x) = rf(r), Jp(x + y) = arpJ(rp). The algorithm.
therefore, consists of first linearly weighting the input

__P fJ(r) and performing the r - x coordinates transform.
a) (b) This new input is then correlated with a similarly

weighted and coordinate transformed nth-order Bessel
Fig. 2. Experimental results for first-order Hankel trans- function to give the desired Hankel transform also in
form, F1 (p),ofb(r-a). (a) A plotof IJ(ap)I'-versusp, which linearly weighted and coordinate-distorted form. In
is the theoretically expected result. (b) A line scan through any physical system the correlation integral will be
the origin of the two-dimensional Fourier transform, giving performed over a finite interval, giving rise to truncation
JF,(p)J2 versus p. errors. Also, if the input is sampled in the x domain,

the sampling rate should be adequate to represent the
by a cylindrical lens to implement the one-dimensional function accurately in the x domain. s8

Fourier transform with respect to 0. Since the operations of coordinate transformation
Initial optical experiments established the connection and correlation can be performed by an optical pro-

between a two-dimensional Fourier transform with cessor, an optical system can be designed and used to
respect to cartesian coordinates and a Hankel transform calculate F (p). Computer-generated holograms can
of order n for a function of the form f(r) exptjn0) jEq. be used to perform r - x coordinate transformation as
(2b)]. The optical system used was a standard two- well as to encode the Fourier plane filter with impulse
dimensional Fourier-transform arrangement.' A response J,(x) in a one-dimensional correlator. The
computer-generated hologram was used to encode a second dimension of the optical processor can be used
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to perform different-order Hankel transforms on dif-
ferent inputs, thus achieving multichannel operation.

In the experiments, both the input and the Fourier
plane filter were encoded by computer-generated ho-
lograms. The linear weighting and the coordinate NEW/
transformation of the input was performed by the dig-
ital computer before doing the holographic encoding.
The computer-generated holograms used the Lee- ..... LL:

Burckhardt technique9 and contained 128 pixels. The (a) (b)
optical system is depicted in Fig. 3. This system was

-then used to perform the Hankel transform on two Fig. 5. The oscilloscope traces of the output of the optical
different inputs f1(r) = plJ0 (pjr) and f 2(r) = p.2Jo(p2r). processor performing the zeroth-order Hankel transform.
The Hankel transform of f 1(r) and 2(r) should be b(p The traces correspond to Ipo(y)12 versusy for the two inputs.

pi) and b(p - P2), respectively. The results of a (a) For input (r) = pJ(pir). (b) For input f 2(r)

computer simulation of this algorithm are depicted in A)40(P2r, where P2 = 2pj.

Fig. 4. The finite width of the peak and the appearance
of sidelobes are due to the finite limits of integration, of order m, Fm" (p) is obtained at the origin of the cor-
To facilitate easy comparison with the experimental relation plane.

I results IFo(y)1 2 was plotted versus y instead of Fo(p)
versus p. Figure 5 shows the experimental results ob- F. (p) = f f(r)Jm [p(r + r')]rdrlr',o. (7)
tained. The optical output was detected by a 1024-
element Reticon linear photodiode array. The shift in The Neumann addition theorem for Bessel functions
peak heights (owing to the linear weight) is evident, states that
indicating good qualitative agreement with the corn- s

* puter-simulation results. Jm[p(r + r')J = _ Jrnn(pr')Jd(pr). (8)
This method investigates an approach based on the n

, special properties of Bessel functions. If the input f(r) Substituting for Jm Ip(r + r')] from Eq. (8) into Eq. (7)
v is correlated with J (pr) then the Hankel coefficient we get

f f(r)0 [p(r + r')]rdr

A j I..uLJ = 'f (r) Jm-(pr')Jn(pr)rdr

,,,=, .. Jr.-n(pr')Fn(p). (9)

Fig. 3. The schematic diagram of the experimental set up for Thus, it is seen that the correlation plane contains a sum
performing the one-dimensional correlation between the of Bessel functions of different order weighted by
linearly weighted and coordinate-transformed input, (x), and Hankel transform coefficients evaluated at p, of corre-
similarly weighted and transformed Bessel function 41 (w). sponding order. In principle it is possible to extract

Hankel transform coefficients of different order out of
a single one-dimensional correlation operation. The

* other dimension of a two-dimensional optical processor
4 can be used to perform correlations with J. (pr) with

J,(r r) different values of p.
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